Title: | A Forward Agent-Based Transmission Chain Simulator |
---|---|
Description: | The aim of 'nosoi' (pronounced no.si) is to provide a flexible agent-based stochastic transmission chain/epidemic simulator (Lequime et al. Methods in Ecology and Evolution 11:1002-1007). It is named after the daimones of plague, sickness and disease that escaped Pandora's jar in the Greek mythology. 'nosoi' is able to take into account the influence of multiple variable on the transmission process (e.g. dual-host systems (such as arboviruses), within-host viral dynamics, transportation, population structure), alone or taken together, to create complex but relatively intuitive epidemiological simulations. |
Authors: | Sebastian Lequime [aut, cre] , Paul Bastide [aut] , Simon Dellicour [aut] , Philippe Lemey [aut] , Guy Baele [aut] , Thijs Janzen [ctb] |
Maintainer: | Sebastian Lequime <[email protected]> |
License: | GPL-3 |
Version: | 1.1.2 |
Built: | 2024-11-06 05:30:36 UTC |
Source: | https://github.com/slequime/nosoi |
This function runs a dual-host transmission chain simulation, with structured hosts populations (such as spatial features) in a shared continuous space. The simulation stops either at the end of given time (specified by length.sim) or when the number of hosts infected threshold (max.infected) is passed. The movement of hosts on the continuous space map is a random walk (Brownian motion) that can be modified towards a biased random walk where hosts tend to be attracted to higher values of the environmental variable defined by the raster.
dualContinuous( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, init.structure.A, init.structure.B, structure.raster.A, structure.raster.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, diff.pExit.A = FALSE, hostCount.pExit.A = FALSE, pMove.A, param.pMove.A, timeDep.pMove.A = FALSE, diff.pMove.A = FALSE, hostCount.pMove.A = FALSE, sdMove.A, param.sdMove.A, diff.sdMove.A = FALSE, timeDep.sdMove.A = FALSE, hostCount.sdMove.A = FALSE, attracted.by.raster.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, diff.nContact.A = FALSE, hostCount.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, diff.pTrans.A = FALSE, hostCount.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, diff.pExit.B = FALSE, hostCount.pExit.B = FALSE, pMove.B, param.pMove.B, timeDep.pMove.B = FALSE, diff.pMove.B = FALSE, hostCount.pMove.B = FALSE, sdMove.B, param.sdMove.B, diff.sdMove.B = FALSE, timeDep.sdMove.B = FALSE, hostCount.sdMove.B = FALSE, attracted.by.raster.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, diff.nContact.B = FALSE, hostCount.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, diff.pTrans.B = FALSE, hostCount.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
dualContinuous( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, init.structure.A, init.structure.B, structure.raster.A, structure.raster.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, diff.pExit.A = FALSE, hostCount.pExit.A = FALSE, pMove.A, param.pMove.A, timeDep.pMove.A = FALSE, diff.pMove.A = FALSE, hostCount.pMove.A = FALSE, sdMove.A, param.sdMove.A, diff.sdMove.A = FALSE, timeDep.sdMove.A = FALSE, hostCount.sdMove.A = FALSE, attracted.by.raster.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, diff.nContact.A = FALSE, hostCount.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, diff.pTrans.A = FALSE, hostCount.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, diff.pExit.B = FALSE, hostCount.pExit.B = FALSE, pMove.B, param.pMove.B, timeDep.pMove.B = FALSE, diff.pMove.B = FALSE, hostCount.pMove.B = FALSE, sdMove.B, param.sdMove.B, diff.sdMove.B = FALSE, timeDep.sdMove.B = FALSE, hostCount.sdMove.B = FALSE, attracted.by.raster.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, diff.nContact.B = FALSE, hostCount.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, diff.pTrans.B = FALSE, hostCount.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected.A |
specifies the maximum number of individual hosts A that can be infected in the simulation. |
max.infected.B |
specifies the maximum number of individual hosts B that can be infected in the simulation. |
init.individuals.A |
number of initially infected individuals (hosts A). |
init.individuals.B |
number of initially infected individuals (hosts B). |
init.structure.A |
in which location the initially infected host-A individuals are located. A vector of coordinates in the same coordinate space as the raster (NA if init.individual.A is 0). |
init.structure.B |
in which location the initially infected host-B individuals are located. A vector of coordinates in the same coordinate space as the raster (NA if init.individual.B is 0). |
structure.raster.A |
raster object defining the environmental variable for host-type A. |
structure.raster.B |
raster object defining the environmental variable for host B. |
pExit.A |
function that gives the probability to exit the simulation for an infected host A (either moving out, dying, etc.). |
param.pExit.A |
parameter names (list of functions) for the pExit for host-type A. |
timeDep.pExit.A |
is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pExit.A |
does pExit of host-type A depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.pExit.A |
does pExit of host-type A vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.pExit.A should be TRUE. |
pMove.A |
function that gives the probability of a host moving as a function of time for host-type A. |
param.pMove.A |
parameter names (list of functions) for the pMove for host-type A. |
timeDep.pMove.A |
is pMove of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pMove.A |
does pMove of host-type A depend on the environmental variable (set by the raster) (TRUE/FALSE).A. |
hostCount.pMove.A |
does pMove of host-type A vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.pMove.A should be TRUE. |
sdMove.A |
function that gives the distance traveled for host-type A (based on coordinates); output is the standard deviation value for the Brownian motion. |
param.sdMove.A |
parameter names (list of functions) for sdMove for host-type A. |
diff.sdMove.A |
does sdMove of host-type A depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.sdMove.A |
is sdMove of host-type A dependent on the absolute time of the simulation (TRUE/FALSE) ? |
hostCount.sdMove.A |
does sdMove varies with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); diff.sdMove.A should be TRUE. |
attracted.by.raster.A |
should the host-type A be attracted by higher values in the environmental raster? (TRUE/FALSE). |
nContact.A |
function that gives the number of potential transmission events per unit of time for host-type A. |
param.nContact.A |
parameter names (list of functions) for param.nContact for host-type A. |
timeDep.nContact.A |
is nContact of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.nContact.A |
does nContact of host-type A depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.nContact.A |
does nContact vary with the host count (of either host-type A or B) in each raster cell?? (TRUE/FALSE); diff.nContact.A should be TRUE. |
pTrans.A |
function that gives the probability of transmit a pathogen as a function of time since infection for host A. |
param.pTrans.A |
parameter names (list of functions) for the pExit for host A. |
timeDep.pTrans.A |
is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pTrans.A |
does pTrans of host-type A depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.pTrans.A |
does pTrans vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); diff.pTrans.A should be TRUE. |
prefix.host.A |
character(s) to be used as a prefix for the host A identification number. |
pExit.B |
function that gives the probability to exit the simulation for an infected host B (either moving out, dying, etc.). |
param.pExit.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pExit.B |
is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pExit.B |
does pExit of host-type B depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.pExit.B |
does pExit of host-type B vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.pExit.B should be TRUE. |
pMove.B |
function that gives the probability of a host moving as a function of time for host-type B. |
param.pMove.B |
parameter names (list of functions) for the pMove for host-type B. |
timeDep.pMove.B |
is sdMove of host-type B dependent on the absolute time of the simulation (TRUE/FALSE) for host-type B. |
diff.pMove.B |
does pMove of host-type B depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.pMove.B |
does pMove of host-type B vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.pMove.B should be TRUE. |
sdMove.B |
function that gives the distance traveled for host-type B (based on coordinates); output is the standard deviation value for the Brownian motion. |
param.sdMove.B |
parameter names (list of functions) for sdMove for host-type B. |
diff.sdMove.B |
does sdMove of host-type B depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.sdMove.B |
is sdMove of host-type B dependent on the absolute time of the simulation (TRUE/FALSE) ? |
hostCount.sdMove.B |
does sdMove of host-type B vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.sdMove.B should be TRUE. |
attracted.by.raster.B |
should the host-type B be attracted by higher values in the environmental raster? (TRUE/FALSE) |
nContact.B |
function that gives the number of potential transmission events per unit of time for host B. |
param.nContact.B |
parameter names (list of functions) for param.nContact for host-type B. |
timeDep.nContact.B |
is nContact of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.nContact.B |
does nContact of host-type B depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.nContact.B |
does nContact of host-type B vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.nContact.B should be TRUE. |
pTrans.B |
function that gives the probability of transmit a pathogen as a function of time since infection for host B. |
param.pTrans.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pTrans.B |
is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pTrans.B |
does pTrans of host-type B depend on the environmental variable (set by the raster) (TRUE/FALSE). |
hostCount.pTrans.B |
does pTrans of host-type B vary with the host count (of either host-type A or B) in each raster cell? (TRUE/FALSE); if TRUE, diff.pTrans.B should be TRUE. |
prefix.host.B |
character(s) to be used as a prefix for the host B identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The structure raster(s) provided provided should of class raster
. High values of the environmental variable can attract hosts if attracted.by.raster
is TRUE. Raster have to share the same space (i.e. also the same cell size and ID).
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE),
current.env.value
(optional, only if diff is TRUE), host.count.A
or host.count.B
(optional, only if hostCount is TRUE) and parameters
specified in the list.
The pMove
function should return a single probability (a number between 0 and 1), and sdMove
a real number (keep in mind this number is related to your coordinate space).
The use of diff
(switch to TRUE
) makes the corresponding function use the argument current.env.value
(for "current environmental value").
The use of hostCount
(switch to TRUE
) makes the corresponding function use the argument host.count
.
The suffix .A
or .B
specifies if the considered function or parameter concerns host type A or B.
For simulations with a discrete structure, see dualDiscrete
. For simulations without any structures, see dualNone
.
library(raster) #Generating a raster for the movement set.seed(860) test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50) test.raster[] <- runif(10000, -80, 180) test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Move_fct <- function(t){return(0.1)} sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} start.pos <- c(0,0) set.seed(805) test.nosoi <- nosoiSim(type="dual", popStructure="continuous", length.sim=200, max.infected.A=500, max.infected.B=500, init.individuals.A=1, init.individuals.B=0, init.structure.A=start.pos, init.structure.B=NA, structure.raster.A=test.raster, structure.raster.B=test.raster, pExit.A=p_Exit_fct, param.pExit.A=NA, timeDep.pExit.A=FALSE, diff.pExit.A=FALSE, pMove.A=p_Move_fct, param.pMove.A=NA, timeDep.pMove.A=FALSE, diff.pMove.A=FALSE, diff.sdMove.A=TRUE, sdMove.A=sdMove_fct, param.sdMove.A=NA, attracted.by.raster.A=TRUE, nContact.A=time_contact, param.nContact.A=NA, timeDep.nContact.A=FALSE, diff.nContact.A=FALSE, pTrans.A=proba, param.pTrans.A=list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.A=FALSE, diff.pTrans.A=FALSE, prefix.host.A="H", pExit.B=p_Exit_fct, param.pExit.B=NA, timeDep.pExit.B=FALSE, diff.pExit.B=FALSE, pMove.B=p_Move_fct, param.pMove.B=NA, timeDep.pMove.B=FALSE, diff.pMove.B=FALSE, diff.sdMove.B=TRUE, sdMove.B=sdMove_fct, param.sdMove.B=NA, attracted.by.raster.B=TRUE, nContact.B=time_contact, param.nContact.B=NA, timeDep.nContact.B=FALSE, diff.nContact.B=FALSE, pTrans.B=proba, param.pTrans.B=list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.B=FALSE, diff.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
library(raster) #Generating a raster for the movement set.seed(860) test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50) test.raster[] <- runif(10000, -80, 180) test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Move_fct <- function(t){return(0.1)} sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} start.pos <- c(0,0) set.seed(805) test.nosoi <- nosoiSim(type="dual", popStructure="continuous", length.sim=200, max.infected.A=500, max.infected.B=500, init.individuals.A=1, init.individuals.B=0, init.structure.A=start.pos, init.structure.B=NA, structure.raster.A=test.raster, structure.raster.B=test.raster, pExit.A=p_Exit_fct, param.pExit.A=NA, timeDep.pExit.A=FALSE, diff.pExit.A=FALSE, pMove.A=p_Move_fct, param.pMove.A=NA, timeDep.pMove.A=FALSE, diff.pMove.A=FALSE, diff.sdMove.A=TRUE, sdMove.A=sdMove_fct, param.sdMove.A=NA, attracted.by.raster.A=TRUE, nContact.A=time_contact, param.nContact.A=NA, timeDep.nContact.A=FALSE, diff.nContact.A=FALSE, pTrans.A=proba, param.pTrans.A=list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.A=FALSE, diff.pTrans.A=FALSE, prefix.host.A="H", pExit.B=p_Exit_fct, param.pExit.B=NA, timeDep.pExit.B=FALSE, diff.pExit.B=FALSE, pMove.B=p_Move_fct, param.pMove.B=NA, timeDep.pMove.B=FALSE, diff.pMove.B=FALSE, diff.sdMove.B=TRUE, sdMove.B=sdMove_fct, param.sdMove.B=NA, attracted.by.raster.B=TRUE, nContact.B=time_contact, param.nContact.B=NA, timeDep.nContact.B=FALSE, diff.nContact.B=FALSE, pTrans.B=proba, param.pTrans.B=list(p_max=p_max_fct, t_incub=t_incub_fct), timeDep.pTrans.B=FALSE, diff.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
This function, that can be wrapped within nosoiSim
, runs a dual-host transmission chain simulation, with discrete hosts populations structures (e.g. spatial, socio-economic, etc.). The simulation stops either at
the end of given time (specified by length.sim
) or when the number of hosts infected threshold (max.infected
) is crossed.
dualDiscrete( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, init.structure.A, init.structure.B, structure.matrix.A, structure.matrix.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, diff.pExit.A = FALSE, hostCount.pExit.A = FALSE, pMove.A, param.pMove.A, timeDep.pMove.A = FALSE, diff.pMove.A = FALSE, hostCount.pMove.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, diff.nContact.A = FALSE, hostCount.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, diff.pTrans.A = FALSE, hostCount.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, diff.pExit.B = FALSE, hostCount.pExit.B = FALSE, pMove.B, param.pMove.B, timeDep.pMove.B = FALSE, diff.pMove.B = FALSE, hostCount.pMove.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, diff.nContact.B = FALSE, hostCount.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, diff.pTrans.B = FALSE, hostCount.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
dualDiscrete( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, init.structure.A, init.structure.B, structure.matrix.A, structure.matrix.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, diff.pExit.A = FALSE, hostCount.pExit.A = FALSE, pMove.A, param.pMove.A, timeDep.pMove.A = FALSE, diff.pMove.A = FALSE, hostCount.pMove.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, diff.nContact.A = FALSE, hostCount.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, diff.pTrans.A = FALSE, hostCount.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, diff.pExit.B = FALSE, hostCount.pExit.B = FALSE, pMove.B, param.pMove.B, timeDep.pMove.B = FALSE, diff.pMove.B = FALSE, hostCount.pMove.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, diff.nContact.B = FALSE, hostCount.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, diff.pTrans.B = FALSE, hostCount.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected.A |
specifies the maximum number of individual hosts A that can be infected in the simulation. |
max.infected.B |
specifies the maximum number of individual hosts B that can be infected in the simulation. |
init.individuals.A |
number of initially infected individuals (hosts A). |
init.individuals.B |
number of initially infected individuals (hosts B). |
init.structure.A |
in which state (e.g. location) the initially infected individuals of host-type A are located ( |
init.structure.B |
in which state (e.g. location) the initially infected individuals of host-type B are located ( |
structure.matrix.A |
transition matrix (probabilities) to go from location A (row) to B (column) for host-type A. |
structure.matrix.B |
transition matrix (probabilities) to go from location A (row) to B (column) for host-type B. |
pExit.A |
function that gives the probability to exit the simulation for an infected host A (either moving out, dying, etc.). |
param.pExit.A |
parameter names (list of functions) for the pExit for host-type A. |
timeDep.pExit.A |
is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pExit.A |
is pExit of host-type A different between states of the structured population (TRUE/FALSE)? |
hostCount.pExit.A |
does pExit of host-type A vary with the host count (of either host-type A or B) in the state? (TRUE/FALSE); diff.pExit.A should be TRUE. |
pMove.A |
function that gives the probability of a host moving as a function of time for host-type A. |
param.pMove.A |
parameter names (list of functions) for the pMove for host-type A. |
timeDep.pMove.A |
is pMove of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pMove.A |
is pMove of host-type A different between states of the structured population (TRUE/FALSE)? |
hostCount.pMove.A |
does pMove of host-type A vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.pMove.A should be TRUE. |
nContact.A |
function that gives the number of potential transmission events per unit of time for host-type A. |
param.nContact.A |
parameter names (list of functions) for param.nContact for host-type A. |
timeDep.nContact.A |
is nContact of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.nContact.A |
is nContact of host-type A different between states of the structured population (TRUE/FALSE)? |
hostCount.nContact.A |
does nContact of host-type A vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.nContact.A should be TRUE. |
pTrans.A |
function that gives the probability of transmit a pathogen as a function of time since infection for host A. |
param.pTrans.A |
parameter names (list of functions) for the pExit for host A. |
timeDep.pTrans.A |
is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pTrans.A |
is pTrans of host-type A different between states of the structured population (TRUE/FALSE)? |
hostCount.pTrans.A |
does pTrans of host-type A vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.pTrans.A should be TRUE. |
prefix.host.A |
character(s) to be used as a prefix for the host A identification number. |
pExit.B |
function that gives the probability to exit the simulation for an infected host B (either moving out, dying, etc.). |
param.pExit.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pExit.B |
is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pExit.B |
is pExit of host-type B different between states of the structured population (TRUE/FALSE)? |
hostCount.pExit.B |
does pExit of host-type B vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.pExit.B should be TRUE. |
pMove.B |
function that gives the probability of a host moving as a function of time for host-type B. |
param.pMove.B |
parameter names (list of functions) for the pMove for host-type B. |
timeDep.pMove.B |
is sdMove of host-type B dependent on the absolute time of the simulation (TRUE/FALSE) for host-type B. |
diff.pMove.B |
is pMove of host-type B different between states of the structured population (TRUE/FALSE)? |
hostCount.pMove.B |
does pMove of host-type B vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.pMove.B should be TRUE. |
nContact.B |
function that gives the number of potential transmission events per unit of time for host B. |
param.nContact.B |
parameter names (list of functions) for param.nContact for host-type B. |
timeDep.nContact.B |
is nContact of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.nContact.B |
is nContact of host-type B different between states of the structured population (TRUE/FALSE)? |
hostCount.nContact.B |
does nContact of host-type B vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.nContact.B should be TRUE. |
pTrans.B |
function that gives the probability of transmit a pathogen as a function of time since infection for host B. |
param.pTrans.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pTrans.B |
is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
diff.pTrans.B |
is pTrans host-type B different between states of the structured population (TRUE/FALSE)? |
hostCount.pTrans.B |
does pTrans of host-type B vary with the host count (of either host A or B) in the state? (TRUE/FALSE); diff.pTrans.B should be TRUE. |
prefix.host.B |
character(s) to be used as a prefix for the host B identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The structure/transition matrix provided provided should of class matrix
, with the same number of rows and columns, rows representing departure state and column the arrival state. All rows should add to 1. Probability values can be different for hosts A and B (so two different matrices), but the name of the column and the rows should be shared.
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE),
current.in
(optional, only if diff is TRUE), host.count.A
or host.count.B
(optional, only if hostCount is TRUE) and parameters
specified in the list.
The pMove
function should return a single probability (a number between 0 and 1).
The use of diff
(switch to TRUE
) makes the corresponding function use the argument current.in
(for "currently in"). Your function should in that case give a result for every possible discrete state.
The use of hostCount
(switch to TRUE
) makes the corresponding function use the argument host.count
.
The suffix .A
or .B
specifies if the considered function or parameter concerns host type A or B.
For simulations with a structure in continuous space, see dualContinuous
. For simulations without any structures, see dualNone
.
#Host A t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Move_fctA <- function(t){return(0.1)} p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t,current.in){ if(current.in=="A"){return(0.1)} if(current.in=="B"){return(0.2)} if(current.in=="C"){return(1)}} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0), nrow = 3, ncol = 3, dimnames=list(c("A","B","C"),c("A","B","C"))) set.seed(6262) test.nosoi <- nosoiSim(type="dual", popStructure="discrete", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, init.structure.A="A", init.structure.B=NA, structure.matrix.A=transition.matrix, structure.matrix.B=transition.matrix, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), pMove.A=p_Move_fctA, param.pMove.A=NA, timeDep.pMove.A=FALSE, diff.pMove.A=FALSE, timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=FALSE, diff.pExit.B=TRUE, pMove.B=NA, param.pMove.B=NA, timeDep.pMove.B=FALSE, diff.pMove.B=FALSE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
#Host A t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Move_fctA <- function(t){return(0.1)} p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t,current.in){ if(current.in=="A"){return(0.1)} if(current.in=="B"){return(0.2)} if(current.in=="C"){return(1)}} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0), nrow = 3, ncol = 3, dimnames=list(c("A","B","C"),c("A","B","C"))) set.seed(6262) test.nosoi <- nosoiSim(type="dual", popStructure="discrete", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, init.structure.A="A", init.structure.B=NA, structure.matrix.A=transition.matrix, structure.matrix.B=transition.matrix, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), pMove.A=p_Move_fctA, param.pMove.A=NA, timeDep.pMove.A=FALSE, diff.pMove.A=FALSE, timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=FALSE, diff.pExit.B=TRUE, pMove.B=NA, param.pMove.B=NA, timeDep.pMove.B=FALSE, diff.pMove.B=FALSE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
This function, that can be wrapped within nosoiSim
, runs a dual-host transmission chain simulation, without any structure features in both hosts populations. The simulation stops either at
the end of given time (specified by length.sim
) or when the number of hosts infected threshold (max.infected
) is crossed.
dualNone( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
dualNone( length.sim, max.infected.A, max.infected.B, init.individuals.A, init.individuals.B, pExit.A, param.pExit.A, timeDep.pExit.A = FALSE, nContact.A, param.nContact.A, timeDep.nContact.A = FALSE, pTrans.A, param.pTrans.A, timeDep.pTrans.A = FALSE, prefix.host.A = "H", pExit.B, param.pExit.B, timeDep.pExit.B = FALSE, nContact.B, param.nContact.B, timeDep.nContact.B = FALSE, pTrans.B, param.pTrans.B, timeDep.pTrans.B = FALSE, prefix.host.B = "V", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected.A |
specifies the maximum number of individual hosts A that can be infected in the simulation. |
max.infected.B |
specifies the maximum number of individual hosts B that can be infected in the simulation. |
init.individuals.A |
number of initially infected individuals (hosts A). |
init.individuals.B |
number of initially infected individuals (hosts B). |
pExit.A |
function that gives the probability to exit the simulation for an infected host A (either moving out, dying, etc.). |
param.pExit.A |
parameter names (list of functions) for the pExit for host-type A. |
timeDep.pExit.A |
is pExit of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
nContact.A |
function that gives the number of potential transmission events per unit of time for host-type A. |
param.nContact.A |
parameter names (list of functions) for param.nContact for host-type A. |
timeDep.nContact.A |
is nContact of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
pTrans.A |
function that gives the probability of transmit a pathogen as a function of time since infection for host A. |
param.pTrans.A |
parameter names (list of functions) for the pExit for host A. |
timeDep.pTrans.A |
is pTrans of host-type A dependent on the absolute time of the simulation (TRUE/FALSE)? |
prefix.host.A |
character(s) to be used as a prefix for the host A identification number. |
pExit.B |
function that gives the probability to exit the simulation for an infected host B (either moving out, dying, etc.). |
param.pExit.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pExit.B |
is pExit of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
nContact.B |
function that gives the number of potential transmission events per unit of time for host B. |
param.nContact.B |
parameter names (list of functions) for param.nContact for host-type B. |
timeDep.nContact.B |
is nContact of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
pTrans.B |
function that gives the probability of transmit a pathogen as a function of time since infection for host B. |
param.pTrans.B |
parameter names (list of functions) for the pExit for host-type B. |
timeDep.pTrans.B |
is pTrans of host-type B dependent on the absolute time of the simulation (TRUE/FALSE)? |
prefix.host.B |
character(s) to be used as a prefix for the host B identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The suffix .A
or .B
specifies if the considered function or parameter concerns host type A or B.
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE), parameters
specified in the list.
For simulations with a discrete structured host population, see dualDiscrete
. For simulations with a structured population in continuous space, dualContinuous
#Host A t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} #Host B t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t,prestime){(sin(prestime/12)+1)/5} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} set.seed(90) test.nosoi <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=TRUE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
#Host A t_infectA_fct <- function(x){rnorm(x,mean = 12,sd=3)} pTrans_hostA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=sin(pi*t/t_infectA)} if(t/t_infectA > 1){p=0} return(p) } p_Exit_fctA <- function(t,t_infectA){ if(t/t_infectA <= 1){p=0} if(t/t_infectA > 1){p=1} return(p) } time_contact_A = function(t){sample(c(0,1,2),1,prob=c(0.2,0.4,0.4))} #Host B t_incub_fct_B <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct_B <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct_B <- function(t,prestime){(sin(prestime/12)+1)/5} pTrans_hostB <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact_B = function(t){round(rnorm(1, 3, 1), 0)} set.seed(90) test.nosoi <- nosoiSim(type="dual", popStructure="none", length.sim=40, max.infected.A=100, max.infected.B=200, init.individuals.A=1, init.individuals.B=0, pExit.A = p_Exit_fctA, param.pExit.A = list(t_infectA = t_infectA_fct), timeDep.pExit.A=FALSE, nContact.A = time_contact_A, param.nContact.A = NA, timeDep.nContact.A=FALSE, pTrans.A = pTrans_hostA, param.pTrans.A = list(t_infectA=t_infectA_fct), timeDep.pTrans.A=FALSE, prefix.host.A="H", pExit.B = p_Exit_fct_B, param.pExit.B = NA, timeDep.pExit.B=TRUE, nContact.B = time_contact_B, param.nContact.B = NA, timeDep.nContact.B=FALSE, pTrans.B = pTrans_hostB, param.pTrans.B = list(p_max=p_max_fct_B, t_incub=t_incub_fct_B), timeDep.pTrans.B=FALSE, prefix.host.B="V") test.nosoi
This function computes from the output of a nosoiSim
simulation the cumulative count of infected hosts at each time step of the simulation. The output is a data.table
.
getCumulative(nosoi.output)
getCumulative(nosoi.output)
nosoi.output |
Output of a nosoi simulation (object of class |
The output is a data.table
with the following structure:
Time-step (integer).
Cumulative number of infected hosts at given time-step.
Host-type, identified by its user-defined prefix.
This function computes from the output of a nosoiSim
simulation the dynamic count of infected hosts at each time step (and each state if discrete structure) of the simulation. The output is a data.table
.
getDynamic(nosoi.output)
getDynamic(nosoi.output)
nosoi.output |
Output of a nosoi simulation (object of class |
The output is a data.table
with the following structure:
(only when discrete structure) Given state
Current number of infected hosts at given time-step.
Host-type, identified by its user-defined prefix.
Time-step (integer).
nosoiSim
objectThis function extracts data user-defined data (i.e. table.hosts
, N.infected
, table.state
or popStructure
) from a nosoiSim
object.
getHostData( nosoi.output, what = c("table.hosts", "N.infected", "table.state", "popStructure"), pop = "A" )
getHostData( nosoi.output, what = c("table.hosts", "N.infected", "table.state", "popStructure"), pop = "A" )
nosoi.output |
an object of class |
what |
the data to get, among |
pop |
the population to be extracted (one of "A" or "B") |
Returns a data.table
with the requested data.
To directly extract table.hosts
or table.state
, you can also use getTableHosts
and getTableState
respectively.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) data.extracted <- getHostData(test.nosoi, "table.hosts", "A")
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) data.extracted <- getHostData(test.nosoi, "table.hosts", "A")
nosoi
simulationGets an estimate of secondary cases (what R0 usually tries to estimate) and its distribution from the output of a nosoiSim
simulation. The actual calculation is based on inactive hosts at the end of the simulation to avoid bias introduced by hosts that have not finished their transmission potential.
getR0(nosoi.output)
getR0(nosoi.output)
nosoi.output |
Output of a nosoi simulation (object of class |
Current getR0 (after and including version 1.1.0) is a corrected version. In previous versions (prior to 1.1.0), the output included in its computation hosts that should not have been counted (still active).
A list with the following items:
Number of inactive hosts at the end of the simulation.
Mean R0 based on the distribution (see below).
Distribution for each host of the secondary cases it generated (in case of dual-hosts, then the secondary cases of the same host-type).
table.hosts
from a nosoiSim
objectThis function extracts the table.hosts
for the request host-type from a nosoiSim
object.
getTableHosts(nosoi.output, pop = "A")
getTableHosts(nosoi.output, pop = "A")
nosoi.output |
an object of class |
pop |
the host-type to be extracted (either "A" or "B", if not dual-host, then "A") |
Returns a data.table
with the requested data. The table.hosts
(class data.table
) contains informations about each host that has been simulated (one row is one host).
The structure of the table is the following:
Unique identifier for the host, based on user-defined prefix and an integer.
Unique identifier for the host that infected the current one.
(only if structure is present) State or coordinates (in that case inf.in.x and inf.in.y) in which the host was infected.
(only if structure is present) State or coordinates (in that case current.in.x and current.in.y) in which the host is at the end of the simulation.
(only if continuous structure is present) Environmental value (raster cell value) in which the host is at the end of the simulation.
(only if continuous structure is present) Raster cell numeric ID in which the host is at the end of the simulation.
(only if structure is present) Host count in the current state or raster cell (beware, updated only if used).
When did the host enter the simulation (infection time).
When did the host exit the simulation (NA if still active).
Is the host still active at the end of the simulation (TRUE for YES, FALSE for NO)?
The remaining columns are the sampled values for the individual-based parameters (if any) specified by the user.
table.state
from a nosoiSim
objectThis function extracts the table.state
for the request host-type from a nosoiSim
object. table.state
is present only if there is any structure (discrete or continuous) used.
getTableState(nosoi.output, pop = "A")
getTableState(nosoi.output, pop = "A")
nosoi.output |
an object of class |
pop |
the host-type to be extracted (either "A" or "B", if not dual-host, then "A") |
Returns a data.table
with the requested data. The table.state
(class data.table
) contains informations the location of each host during time (one row is one host at one location).
The structure of the table is the following:
Unique identifier for the host, based on user-defined prefix and an integer.
State or coordinates (in that case state.x and state.y) in which the host is during that time interval.
(only if continuous structure is present) Environmental value (raster cell value) in which the host is at the end of the simulation.
(only if continuous structure is present) Raster cell numeric ID in which the host is at the end of the simulation.
Time-step at which the host moved to the location.
Time-step at which the host exited the location (either by exiting the simulation or moving somewhere else).
nosoi
simulationFrom a nosoi
simulated epidemics, this function extracts the full transmission tree in a form mimicking a phylogenetic tree.
getTransmissionTree(nosoiInf)
getTransmissionTree(nosoiInf)
nosoiInf |
an object of class |
This function uses packages tidytree and treeio,
that rely on ape
.
A tree of class treedata
, containing a
phylogenetic tree based on the transmission chain and the mapped data at all the nodes.
For exporting the annotated tree to other software packages, see functions
in treeio (e.g. write.beast
).
To sub-sample this tree, see functions sampleTransmissionTree
and sampleTransmissionTreeFromExiting
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
nosoi
.This function determines which general settings the user wants to use for his simulation. All other arguments are passed down to the chosen simulator itself, such as singleNone
, singleDiscrete
, singleContinuous
, dualNone
, dualDiscrete
or dualContinuous
.
nosoiSim(type = "single", popStructure = "none", ...)
nosoiSim(type = "single", popStructure = "none", ...)
type |
specifies which type of pathogen we are interested in, either "single" or "dual"-host (e.g. arboviruses). |
popStructure |
specifies if the population in which the transmission is to occur is structured ("none", "discrete" or "continuous"). |
... |
arguments to be passed on to the chosen simulator itself, such as |
An object of class nosoiSim
, containing all results of the simulation. Class nosoiSim
object have the following slots:
Number of time steps the simulation ran (integer).
String giving the simulation type ("single" or "dual" host).
nosoiSimOne
Number of infected hosts (integer).
Table containing the results of the simulation (see getTableHosts
for more details on the table).
Table containing the results of the simulation, focusing on the movement history of each host (see getTableState
for more details on the table).
String containing the prefix used to name hosts (character string).
String giving the population structure (one of "none", "discrete" or "continuous").
nosoiSimOne
Same structure as host.info.A
, but for host B (if it exists).
singleNone
, singleDiscrete
,
singleContinuous
, dualNone
,
dualDiscrete
and dualContinuous
.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) test.nosoi
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) test.nosoi
nosoi
simulationThis function provides summary information about the simulation (number of infected hosts, R0, etc.) as a list.
nosoiSummary(object) ## S3 method for class 'nosoiSim' summary(object, ...)
nosoiSummary(object) ## S3 method for class 'nosoiSim' summary(object, ...)
object |
Output of a nosoi simulation (object of class |
... |
further arguments passed to or from other methods. |
All computed data is provided in a list:
Provides a sublist with number of inactive hosts at the end of the simulation N.inactive
, mean R0 R0.mean
, and R0 distribution R0.dist
. For more details, see getR0
.
data.table
with the count of currently infected (i.e. active) hosts at each time step of the simulation (by state if the simulation was in a discrete structured host population). For more details, see getDynamic
.
data.table
with the cumulative count of infected hosts at each time step of the simulation. For more details, see getCumulative
.
You can directly compute each elements of the list without using the summarise function. See getR0
, getDynamic
and getCumulative
.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) nosoiSummary(test.nosoi)
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) nosoiSummary(test.nosoi)
Sample a full transmission tree. This function allows for sampling multiple times on the same lineage. When this happens, the sampled ancestor is a tip with length zero.
sampleTransmissionTree(nosoiInf, tree, samples)
sampleTransmissionTree(nosoiInf, tree, samples)
nosoiInf |
an object of class |
tree |
a |
samples |
a
|
The tree needs to be produced by function getTransmissionTree
applied on the same nosoiSim
object.
A tree of class treedata
, containing a
phylogenetic tree based on the transmission chain and the mapped data at all the nodes.
For exporting the annotated tree to other software packages, see functions
in treeio (e.g. write.beast
).
To get the full transmission matrix, see getTransmissionTree
.
For sampling only dead individuals, see sampleTransmissionTreeFromExiting
.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
Sample a full transmission tree. This function allows for sampling only exited (i.e. inactive) individuals (e.g. when the sampling procedure is destructive or cuts the hosts from the population). Beware because it does not influence the epidemiological process, it only means that the host has been sampled when exiting the simulation.
sampleTransmissionTreeFromExiting(tree, hosts)
sampleTransmissionTreeFromExiting(tree, hosts)
tree |
a |
hosts |
a vector of dead hosts to sample |
The tree needs to be produced by function getTransmissionTree
applied on the same nosoiSim
object.
A tree of class treedata
, containing a
phylogenetic tree based on the transmission chain and the mapped data at all the nodes.
For exporting the annotated tree to other software packages, see functions
in treeio (e.g. write.beast
).
To get the full transmission matrix, see getTransmissionTree
.
For sampling among non-dead individuals, see sampleTransmissionTree
.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0, 0.2, 0.4, 0.5, 0, 0.6, 0.5, 0.8, 0), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"), c("A", "B", "C"))) set.seed(805) test.nosoi <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA ) ## Make sure all needed packages are here if (requireNamespace("ape", quietly = TRUE) && requireNamespace("tidytree", quietly = TRUE) && requireNamespace("treeio", quietly = TRUE)) { library(ape) library(tidytree) library(treeio) #' ## Full transmission tree ttreedata <- getTransmissionTree(test.nosoi) plot(ttreedata@phylo) ## Sampling "non dead" individuals hID <- c("H-1", "H-7", "H-15", "H-100") samples <- data.table(hosts = hID, times = c(5.2, 9.3, 10.2, 16), labels = paste0(hID, "-s")) sampledTree <- sampleTransmissionTree(test.nosoi, ttreedata, samples) plot(sampledTree@phylo) ## Sampling "dead" individuals sampledDeadTree <- sampleTransmissionTreeFromExiting(ttreedata, hID) plot(sampledDeadTree@phylo) }
This function runs a single-host transmission chain simulation, with a structured host population (such as spatial features) in a continuous space. The simulation stops either at the end of given time (specified by length.sim) or when the number of hosts infected threshold (max.infected) is passed. The movement of hosts on the continuous space map is a random walk (Brownian motion) that can be modified towards a biased random walk where hosts tend to be attracted to higher values of the environmental variable defined by the raster.
singleContinuous( length.sim, max.infected, init.individuals, init.structure, structure.raster, diff.pExit = FALSE, timeDep.pExit = FALSE, hostCount.pExit = FALSE, pExit, param.pExit, diff.pMove = FALSE, timeDep.pMove = FALSE, hostCount.pMove = FALSE, pMove, param.pMove, diff.sdMove = FALSE, timeDep.sdMove = FALSE, hostCount.sdMove = FALSE, sdMove, param.sdMove, attracted.by.raster = FALSE, diff.nContact = FALSE, timeDep.nContact = FALSE, hostCount.nContact = FALSE, nContact, param.nContact, diff.pTrans = FALSE, timeDep.pTrans = FALSE, hostCount.pTrans = FALSE, pTrans, param.pTrans, prefix.host = "H", print.progress = TRUE, print.step = 10 )
singleContinuous( length.sim, max.infected, init.individuals, init.structure, structure.raster, diff.pExit = FALSE, timeDep.pExit = FALSE, hostCount.pExit = FALSE, pExit, param.pExit, diff.pMove = FALSE, timeDep.pMove = FALSE, hostCount.pMove = FALSE, pMove, param.pMove, diff.sdMove = FALSE, timeDep.sdMove = FALSE, hostCount.sdMove = FALSE, sdMove, param.sdMove, attracted.by.raster = FALSE, diff.nContact = FALSE, timeDep.nContact = FALSE, hostCount.nContact = FALSE, nContact, param.nContact, diff.pTrans = FALSE, timeDep.pTrans = FALSE, hostCount.pTrans = FALSE, pTrans, param.pTrans, prefix.host = "H", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected |
specifies the maximum number of hosts that can be infected in the simulation. |
init.individuals |
number of initially infected individuals. |
init.structure |
in which location the initially infected individuals are located. A vector of coordinates in the same coordinate space as the raster. |
structure.raster |
raster object defining the environmental variable. |
diff.pExit |
does pExit depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.pExit |
is pExit dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.pExit |
does pExit vary with the host count in each raster cell? (TRUE/FALSE); if TRUE, diff.pExit should be TRUE. |
pExit |
function that gives the probability to exit the simulation for an infected host (either moving out, dying, etc.). |
param.pExit |
parameter names (list of functions) for the pExit. |
diff.pMove |
does pMove depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.pMove |
does pMove depend on the absolute time of the simulation (TRUE/FALSE). |
hostCount.pMove |
does pMove vary with the host count in each raster cell? (TRUE/FALSE); if TRUE, diff.pMove should also be TRUE. |
pMove |
function that gives the probability of a host moving as a function of time. |
param.pMove |
parameter names (list of functions) for the pMove. |
diff.sdMove |
does sdMove depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.sdMove |
does sdMove depend on the absolute time of the simulation (TRUE/FALSE). |
hostCount.sdMove |
does sdMove vary with the host count in each raster cell? (TRUE/FALSE); if TRUE, diff.sdMove should be TRUE. |
sdMove |
function that gives the distance traveled (based on coordinates); output is the standard deviation value for the Brownian motion. |
param.sdMove |
parameter names (list of functions) for sdMove. |
attracted.by.raster |
should the hosts be attracted by higher values in the environmental raster? (TRUE/FALSE). |
diff.nContact |
does nContact depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.nContact |
is nContact dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.nContact |
does nContact vary with the host count in each raster cell? (TRUE/FALSE); if TRUE, diff.nContact should be TRUE. |
nContact |
function that gives the number of potential transmission events per unit of time. |
param.nContact |
parameter names (list of functions) for param.nContact. |
diff.pTrans |
does pTrans depend on the environmental variable (set by the raster) (TRUE/FALSE). |
timeDep.pTrans |
is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.pTrans |
does pTrans vary with the host count in each raster cell? (TRUE/FALSE); if TRUE, diff.pTrans should be TRUE. |
pTrans |
function that gives the probability of transmit a pathogen as a function of time since infection. |
param.pTrans |
parameter names (list of functions) for the pExit. |
prefix.host |
character(s) to be used as a prefix for the hosts identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The structure raster provided provided should of class raster
. High values of the environmental variable can attract hosts if attracted.by.raster
is TRUE.
The pMove
function should return a single probability (a number between 0 and 1), and sdMove
a real number (keep in mind this number is related to your coordinate space).
The use of diff
(switch to TRUE
) makes the corresponding function use the argument current.env.value
(for "current environmental value").
The use of hostCount
(switch to TRUE
) makes the corresponding function use the argument host.count
.
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE),
current.env.value
(optional, only if diff is TRUE), host.count
(optional, only if hostCount is TRUE) and parameters
specified in the list.
For simulations with a discrete structure, see singleDiscrete
. For simulations without any structures, see singleNone
.
library(raster) #Generating a raster for the movement set.seed(860) test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50) test.raster[] <- runif(10000, -80, 180) test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean) plot(test.raster) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Move_fct <- function(t){return(0.1)} sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} start.pos <- c(0,0) test.nosoiA <- nosoiSim(type="single", popStructure="continuous", length=200, max.infected=500, init.individuals=1, init.structure=start.pos, structure.raster=test.raster, pMove=p_Move_fct, param.pMove=NA, diff.sdMove=TRUE, sdMove=sdMove_fct, param.sdMove=NA, attracted.by.raster=TRUE, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA)
library(raster) #Generating a raster for the movement set.seed(860) test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50) test.raster[] <- runif(10000, -80, 180) test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean) plot(test.raster) t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Move_fct <- function(t){return(0.1)} sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} start.pos <- c(0,0) test.nosoiA <- nosoiSim(type="single", popStructure="continuous", length=200, max.infected=500, init.individuals=1, init.structure=start.pos, structure.raster=test.raster, pMove=p_Move_fct, param.pMove=NA, diff.sdMove=TRUE, sdMove=sdMove_fct, param.sdMove=NA, attracted.by.raster=TRUE, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA)
This function, that can be wrapped within nosoiSim
, runs a single-host transmission chain simulation, with a discrete host population structure (e.g. spatial, socio-economic, etc.). The simulation stops either at
the end of given time (specified by length.sim
) or when the number of hosts infected threshold (max.infected
) is crossed.
singleDiscrete( length.sim, max.infected, init.individuals, init.structure, structure.matrix, diff.pExit = FALSE, timeDep.pExit = FALSE, hostCount.pExit = FALSE, pExit, param.pExit, diff.pMove = FALSE, timeDep.pMove = FALSE, hostCount.pMove = FALSE, pMove, param.pMove, diff.nContact = FALSE, timeDep.nContact = FALSE, hostCount.nContact = FALSE, nContact, param.nContact, diff.pTrans = FALSE, timeDep.pTrans = FALSE, hostCount.pTrans = FALSE, pTrans, param.pTrans, prefix.host = "H", print.progress = TRUE, print.step = 10 )
singleDiscrete( length.sim, max.infected, init.individuals, init.structure, structure.matrix, diff.pExit = FALSE, timeDep.pExit = FALSE, hostCount.pExit = FALSE, pExit, param.pExit, diff.pMove = FALSE, timeDep.pMove = FALSE, hostCount.pMove = FALSE, pMove, param.pMove, diff.nContact = FALSE, timeDep.nContact = FALSE, hostCount.nContact = FALSE, nContact, param.nContact, diff.pTrans = FALSE, timeDep.pTrans = FALSE, hostCount.pTrans = FALSE, pTrans, param.pTrans, prefix.host = "H", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected |
specifies the maximum number of hosts that can be infected in the simulation. |
init.individuals |
number of initially infected individuals. |
init.structure |
in which state (e.g. location) the initially infected individuals are located. |
structure.matrix |
transition matrix (probabilities) to go from location A (row) to B (column) |
diff.pExit |
is pExit different between states of the structured population (TRUE/FALSE) |
timeDep.pExit |
is pExit dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.pExit |
does pExit varies with the host count in the state? (TRUE/FALSE); diff.pExit should be TRUE. |
pExit |
function that gives the probability to exit the simulation for an infected host (either moving out, dying, etc.). |
param.pExit |
parameter names (list of functions) for the pExit. |
diff.pMove |
is pMove different between states of the structured population (TRUE/FALSE) |
timeDep.pMove |
is pMove dependent on the absolute time of the simulation (TRUE/FALSE) |
hostCount.pMove |
does pMove varies with the host count in the state? (TRUE/FALSE); diff.pMove should be TRUE. |
pMove |
function that gives the probability of a host moving as a function of time. |
param.pMove |
parameter names (list of functions) for the pMove. |
diff.nContact |
is nContact different between states of the structured population (TRUE/FALSE) |
timeDep.nContact |
is nContact dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.nContact |
does nContact varies with the host count in the state? (TRUE/FALSE); diff.nContact should be TRUE. |
nContact |
function that gives the number of potential transmission events per unit of time. |
param.nContact |
parameter names (list of functions) for param.nContact. |
diff.pTrans |
is pTrans different between states of the structured population (TRUE/FALSE) |
timeDep.pTrans |
is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE) |
hostCount.pTrans |
does pTrans varies with the host count in the state? (TRUE/FALSE); diff.pTrans should be TRUE. |
pTrans |
function that gives the probability of transmit a pathogen as a function of time since infection. |
param.pTrans |
parameter names (list of functions) for the pExit. |
prefix.host |
character(s) to be used as a prefix for the hosts identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The structure matrix provided provided should of class matrix
, with the same number of rows and columns, rows representing departure state and column the arrival state. All rows should add to 1.
The pMove
function should return a single probability (a number between 0 and 1).
The use of diff
(switch to TRUE
) makes the corresponding function use the argument current.in
(for "currently in"). Your function should in that case give a result for every possible discrete state.
The use of hostCount
(switch to TRUE
) makes the corresponding function use the argument host.count
.
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE),
current.in
(optional, only if diff is TRUE), host.count
(optional, only if hostCount is TRUE) and parameters
specified in the list.
For simulations with a structure in continuous space, see singleContinuous
. For simulations without any structures, see singleNone
.
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0), nrow = 3, ncol = 3, dimnames=list(c("A","B","C"),c("A","B","C"))) set.seed(805) test.nosoiA <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA)
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} p_Move_fct <- function(t){return(0.1)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact = function(t){round(rnorm(1, 3, 1), 0)} transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0), nrow = 3, ncol = 3, dimnames=list(c("A","B","C"),c("A","B","C"))) set.seed(805) test.nosoiA <- nosoiSim(type="single", popStructure="discrete", length=20, max.infected=100, init.individuals=1, init.structure="A", structure.matrix=transition.matrix, pMove=p_Move_fct, param.pMove=NA, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA)
This function, that can be wrapped within nosoiSim
, runs a single-host transmission chain simulation, without any structure features in the host population. The simulation stops either at
the end of given time (specified by length.sim
) or when the number of hosts infected threshold (max.infected
) is crossed.
singleNone( length.sim, max.infected, init.individuals, pExit, param.pExit, timeDep.pExit = FALSE, nContact, param.nContact, timeDep.nContact = FALSE, pTrans, param.pTrans, timeDep.pTrans = FALSE, prefix.host = "H", print.progress = TRUE, print.step = 10 )
singleNone( length.sim, max.infected, init.individuals, pExit, param.pExit, timeDep.pExit = FALSE, nContact, param.nContact, timeDep.nContact = FALSE, pTrans, param.pTrans, timeDep.pTrans = FALSE, prefix.host = "H", print.progress = TRUE, print.step = 10 )
length.sim |
specifies the length (in unit of time) over which the simulation should be run. |
max.infected |
specifies the maximum number of hosts that can be infected in the simulation. |
init.individuals |
number of initially infected individuals. |
pExit |
function that gives the probability to exit the simulation for an infected host (either moving out, dying, etc.). |
param.pExit |
parameter names (list of functions) for the pExit. |
timeDep.pExit |
is pExit dependent on the absolute time of the simulation? (TRUE/FALSE) |
nContact |
function that gives the number of potential transmission events per unit of time. |
param.nContact |
parameter names (list of functions) for param.nContact. |
timeDep.nContact |
is nContact dependent on the absolute time of the simulation? (TRUE/FALSE) |
pTrans |
function that gives the probability of transmit a pathogen as a function of time since infection. |
param.pTrans |
parameter names (list of functions) for the pExit. |
timeDep.pTrans |
is pTrans dependent on the absolute time of the simulation? (TRUE/FALSE) |
prefix.host |
character(s) to be used as a prefix for the hosts identification number. |
print.progress |
if TRUE, displays a progress bar (current time/length.sim). |
print.step |
print.progress is TRUE, step with which the progress message will be printed. |
The pExit
and pTrans
functions should return a single probability (a number between 0 and 1), and nContact
a positive natural number (positive integer) or 0.
The param
arguments should be a list of functions or NA. Each item name in the parameter list should have the same name as the argument in the corresponding function.
The use of timeDep
(switch to TRUE
) makes the corresponding function use the argument prestime
(for "present time").
An object of class nosoiSim
, containing all results of the simulation.
The user specified function's arguments should follow this order: t
(mandatory), prestime
(optional, only if timeDep is TRUE), parameters
specified in the list.
For simulations with a discrete structured host population, see singleDiscrete
. For simulations with a structured population in continuous space, singleContinuous
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) test.nosoi
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)} p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)} p_Exit_fct <- function(t){return(0.08)} proba <- function(t,p_max,t_incub){ if(t <= t_incub){p=0} if(t >= t_incub){p=p_max} return(p) } time_contact <- function(t){round(rnorm(1, 3, 1), 0)} test.nosoi <- nosoiSim(type="single", popStructure="none", length=40, max.infected=100, init.individuals=1, nContact=time_contact, param.nContact=NA, pTrans = proba, param.pTrans = list(p_max=p_max_fct, t_incub=t_incub_fct), pExit=p_Exit_fct, param.pExit=NA) test.nosoi